Friends with benefits

White-winged Choughs
White-winged Choughs

With the apocalypse come and gone we can still theorise about how our downfall will come about. E. O. Wilson wrote that ‘‘sex is an antisocial force in evolution’’. Charlie Cornwallis, his colleagues at Oxford and their promiscuous birds illustrated why this is so. As is so often the case in evolutionary theory the question centres on sociality, in this instance it takes the form of cooperative breeding. Why would an individual help someone else raise their young rather than having progeny of their own?

The authors ask us to consider the case in birds of a mother and her offspring. If the offspring remains at his natal site and his mother is monogamous he can help in rearing his siblings who are all as related to him as he would be to any of his own potential children. This makes evolutionary sense in terms of relatedness.  However, if his mother is promiscuous his level of relatedness to the resultant other birds will be less than that of his own offspring. The sensible thing for him to do here is to disperse and start a family rather than helping out his half siblings.
The authors of the study collected data on almost 300 bird species recording levels of promiscuity and degree of cooperative breeding to test the monogamy hypothesis. This states that species with high levels of promiscuity will tend towards societies with low levels of cooperative breeding and vice versa.

They were able to show that highly promiscuous birds tend not to have cooperative breeding whereas species like the White-winged Chough, which are completely dependent on others for help in raising their young, are faithful.

But more than this their results demonstrated that, over evolutionary time, transitions to cooperative breeding were associated with low promiscuity. The reverse is also true and echoes Wilson’s statement, because highly promiscuous groups saw a breakdown in cooperation.

There are some exceptions to the rule in that birds can be promiscuous and still have a society of cooperative breeders but this is offset by kin discrimination which involves “directing aid preferentially towards relatives.” So there you have it, sex has the power to destroy societies.

Author

Adam Kane: kanead[at]tcd.ie

Photo credit

wikimedia commons

War of the worms

A battlefield

Some of the most successful animals on earth live in societies characterised by a division of labour between reproducing and non-reproducing castes.  One role non-reproducing members may undertake is defence. Spectacular examples include the heavily armoured termites and ants. Recently a soldier caste was discovered in an entirely new and unexpected battleground, inside the bodies of snails. The soldiers? Tiny parasitic flatworms.

Flatworms, or trematodes, have complicated life cycles, involving several different stages infecting a variety of host species. In one host, often a snail, a single trematode undergoes repeated clonal reproduction. Clones produce more clones or go on to produce the next infective stage, which leaves the snail to infect the final host. While working with trematode colonies of Himasthla sp. infecting the Californian horn snail Cerithidea californica, researchers at the University California Santa Barbara observed that the trematode occurred in two distinct morphological forms. There was a large reproducing primary morph, which appeared to be the form typically described in the literature, and a secondary smaller, thinner morph.

These secondary morphs had a number of other features which set them apart. They rarely showed any signs of reproduction and were far more active. They also had huge muscular pharynxes and guts relative to their larger sisters. When researchers preformed behavioural tests, they discovered just what those large mouth parts were for. The secondary morphs attacked and killed other trematode species and unrelated conspecifics. This behaviour is not unknown in trematodes; a number of species attack and kill other trematodes. What was novel was that the smaller morphs appeared to be doing all attacking. The behaviour was rarely observed in the primary morphs. There was also a spatial segregation of morphs. Primary morphs were located in the visceral mass, mainly in the region of the gonads. The secondary morphs were more widely distributed though mainly found within the mantle. The snail mantle is the main entry point for trematodes, a strategic area to defend against invading armies. Finally, the researcher found very few intermediate morphs, suggesting that the smaller morphs were not simply juvenile stages of the primary morphs. They were a distinct, permanent caste whose function appeared to be defence – soldiers. The researchers had discovered eusociality in a completely new taxonomic group.  Previously, eusocial systems consisting of morphologically distinct, specialised reproductive and non-reproductive castes had only been recognised in insects, snapping shrimp, a sea anemone and mole rats. The researchers have already suggested a further five species of trematodes that may have soldier castes.

Work from New Zealand, published this year, on another species (Philophthalmus sp.) has expanded the list of trematodes with soldier castes. The authors also showed that interspecific competition has a heavy impact on colony numbers. This is just the sort of pressure that favours adaptive strategies to reduce competition, such as a permanent soldier caste. However, competition may not be the only selective pressure driving or maintaining caste differentiation in trematodes. In the absence of competition, the presence non-reproducing morphs were found to provide a benefit to the colony, as measured by the number of infective stages produced. Precisely how this benefit comes about is not yet known. The authors suggest some form of communication or nutrient exchange may be taking place between the two morphs. This gives tantalising hints that these colonies are even more complex and interactive than previously thought.

Not only has the discovery of the eusociality in trematodes widened the taxonomic range of this phenomenon, it has also provided researchers with an exciting new tool to study its evolution. The Trematoda class contains at least 20, 000 species with a wide variety of life-histories and ecologies. The discovery is also a great example of how new and unexpected results can still come from well-studied animals. The Himasthla sp. /Californian horn snail system had been studied for over 65 years.

Author

Karen Loxton: loxtonk[at]tcd.ie

Photo credits

wikimedia commons

“To expect the unexpected shows a thoroughly modern intellect”

I spoke before of how to use mathematics to convey an idea in biology. Here, I’ll take a different tack and discuss a paper in which the author makes his argument with naked English. The author in question is Nicholas Humphrey who in his famous paper ‘The social function of the intellect’ draws a wonderful metaphor of Mother Nature as an economist,

“It is not her habit to tolerate needless extravagance in the animals on her production lines: superfluous capacity is trimmed back, new capacity added only as and when it is needed”.

His metaphor serves as an introduction to the puzzle of the seemingly unnecessarily inflated intellects of some animals, notably humans.

Humphrey questions if such a highly developed intellect is really necessary for invention. The ability to produce tools is generally not a result of deductive reasoning or creative thought but rather follows from aping other individuals or pure trial and error learning. The intellect must have some other function in his estimation and in the end, he proposes that it is as a social glue. The complex interactions that arise out of the social milieu require some serious intellectual horsepower,

“[S]ocial primates are required by the very nature of the system they create and maintain to be calculating beings; they must be able to calculate the consequences of their own behaviour, to calculate the likely behaviour of others, to calculate the balance of advantage and loss – and all this in a context where the evidence on which their calculations are based is ephemeral, ambiguous and liable to change, not least as a consequence of their own actions.”
 

Calculating the consequences of your own behaviour is one thing but understanding that others around you have motivations of their own is a huge leap in understanding. All of this is done without ever having direct access to the subjective thoughts, motives, and desires of another person. Understanding the reasons for understanding is even more impressive and Humphrey’s paper has rightly influenced the theories of scientists since its publication. Most recently a study in the school that mechanistically linked sociality and selection for intelligence.

Author

Adam Kane: kanead[at]tcd.ie

Photo credit

Wikimedia commons