Seminar Series: Nathalie Pettorelli, Institute of Zoology, London

space monitoring

Part of our series of posts by final-year undergraduate students for their Research Comprehension module. Students write blogs inspired by guest lecturers in our Evolutionary Biology and Ecology seminar series in the School of Natural Sciences.

This week, views from Sharon Matthews and Sinead Barrett on Nathalie Pettorelli’s seminar, “Monitoring biodiversity from space: a wealth of opportunities”.

Space, the final frontier for ecology?

Okay, you got me.  I am a trekkie who is fanatical about anything space related. So when I saw that this week’s seminar was to do with conservation biology from space, I was hooked!  Dr. Nathalie Pettorelli from the Institute of Zoology, London spoke with passion and enthusiasm about a new wave of ecology; monitoring species and ecosystems from space.

We were treated to information about remote sensing and how data from satellites can be used to help ecologists in the tasks of assessing population size and habitat condition. Earth observation (EO) data is free and is ripe for the picking.  Satellites are able to “boldy go where no one has gone before” or very few people have (sorry, I will stop with the star trek quotes now!).  They can get information on places that are often inaccessible and inhospitable for the lowly researcher like Antarctica and the Sahara desert.

One of the major tasks ecologists face is estimating the size of a population.  Dr. Pettorelli talked about an ingenious research project that used information from satellites to gain an estimate of the population of emperor penguins (Aptenodytes fosteri) in Antarctica.  Emperor penguin populations may be affected by climate change in the next few decades due to changes in sea-ice distribution and therefore it is important to get an estimate of the extant population.

Frettwell et al. (2012) examined quick-looks from three different very high-resolution satellites.  These have a resolution of ~ 10m and are able to show great detail.  The researchers looked for staining on images and classified it as snow, penguin, shadow or guano.  When areas with penguins were identified, they analysed the penguin pixel area through regression equations.  The statistics gathered from this were used to convert the area of penguins to population numbers.

In this study, the identification of a penguin from a pixel area was done by human interpretation and this led to some error especially in areas of high guano staining.  This could be resolved with future development of higher resolution satellites.  However, there were other issues that arose from using this technology.  Researchers identifying penguins from pixels made an assumption that a pixel constituted one individual when it may in fact have been an individual with a chick close to it.  This can affect the estimated population size.  The kind of error association with using satellites makes me think that this satellite approach should be backed up with other methods such as field study where possible.

Remote sensing can allow research to be undertaken over a broad spatial and temporal scale.  One of Dr. Pettorelli’s projects involved using EO data to assess a game reserve in central Chad for its ability to sustain a reintroduction of the Scimitar-horned Oryx (Oryx dammah).  A vegetation index (an indication of ‘greeness’) and annual mean precipitation, were assessed over a 27-year period for this game reserve. The results showed that precipitation was a main driver of vegetation dynamics and there was an intense greening in the south of the region.  Dr. Pettorelli also found that there was a contraction of the transition zone from north to south. This was an area that was identified as most suitable for the oryx.  This study showed how remote sensing can help inform ecologists about variation in a region over time.  It can greatly enhance the success of reintroducing a species into a suitable area.

There is no doubt in my mind that data from remote sensing can help ecologists in their work but I don’t think it should be used in isolation. Ecosystems involve a complex mix of interactions of many variables. Therefore, this approach could be used alongside other tried and tested (down to earth) methods of studying ecosystems and biodiversity.

Author: Sharon Matthews

——————————————————-

Evidence of Global Change is Sky High

As we all know, climate change is affecting the world in which we live. One aim of scientists is to find out the extent of this change. At a seminar given recently in Trinity College Dublin, Dr. Nathalie Pettorelli from the Zoological Society of London informed us about a new method of doing this. With benefits including the cost, its sustainability, reproductivity and standardised information, satellite usage as a way to monitor biodiversity seems like an excellent option.

Dr. Pettorelli mentioned the vast array of options of satellites available for monitoring depending on what you want to find out in the study. For example, very high resolution imagery has been used in order to count penguins in colonies, Landsat has been used to study the gorilla habitat in Virunga and LiDAR satellites which give a 3-D image have been used in the Bavarian forest. But what interested me most was when Dr. Pettorelli mentioned the ability to monitor vegetation indices and how this technique was used in the reintroduction process of the Scimitar-horned Oryx in Ouadi Rimé-Ouadi Achim Game Reserve in central Chad.

The Scimitar-horned Oryx was last found in the wild in the 1970’s. However it has been kept in captivity and there were plans of reintroducing it back into this area in central Chad. In order to do so, a habitat assessment was undertaken to establish whether the area would still be suitable for the species to live in. The primary productivity over the past number of years was viewed using remote sensing (satellite) techniques. It was seen that the vegetation in the north had significantly dried while the area to the south showed intense greening. Because the Oryx lives preferably in sub desert regions, suitable habitat here was declining and it was not advised to reintroduce this animal to the area.

To me, this shows just how important this method of monitoring is. Due to the increased changes that come about as a result of climate change, species are no longer suited to their natural habitat. Although it wasn’t mentioned in detail in the seminar, it struck me that one use of this satellite method of monitoring would be to use it in assisted migration. This is a method of conservation that involves humans undertaking a translocation of an animal or plant species. This is used when a species can no longer survive in their habitat and so must be moved to a more suitable area. This method of conservation is debatable as there are many associated risks involved including the impact on original species in the new habitat. However, with scientists doing research on this to study possible effects, it may save a species from dying out. Suitable habitat needs to be found for assisted migration to work. The methods that Dr. Pettorelli uses in her habitat assessment in central Chad could be the ideal way to find these habitats needed. This highlights the need for this new method of data collection. Because it is done at such a big scale, it seems like an excellent way of finding large habitats suitable for a new species, whether it’s a tree or a large carnivore.

Changes are occurring globally as a result of anthropogenic actions, and species worldwide are dying out as a result of this. It is clear from the numerous examples mentioned at the seminar that there are many uses of satellite imagery in monitoring biodiversity worldwide. After hearing Dr. Pettorelli talk about this subject, I left realising just how important technology such as satellites are in a time when global change is sky high.

Author: Sinead Barrett

 

Kenya- A Summary through the vegetation

Campsite at Ol Pejeta, with Acacia xanthophloea in the background.
Campsite at Ol Pejeta, with Acacia xanthophloea in the background.

During the first week of November I travelled to Kenya to help out on the Tropical Field Ecology course, run by Ian Donahue in the Zoology Department.  Final year students from Zoology, Environmental Sciences, and Plant Sciences attended, and I was the postgraduate representative from the Botany Department.  While I should under no circumstances be considered a true Botanist-I study plant-animal interactions, and my botanical skills are mediocre at best- I did my best to learn about the amazing tropical flora of this region.  I’m sure others will write about the trip in detail, but I thought I would summarize our experience using the dominant or interesting plants we saw in each place we travelled.

Day 1&2- Arrive in Nairobi: After spending the night in the United Kenya Club, we awoke to a 5 hour drive north to Laikipia County.  Along the way the most striking plants were ornamental and known to a number of the students already- for example, colourful Bougainvillea was visible from quite a distance, as were the beautiful flowering Jacaranda trees- neither of course are native to the region.

Day 3-Ol Pejeta Conservancy, Laikipia County: We camped for the next two days in Ol Pejeta, and although we experienced quite a bit of rain, it was one of the most beautiful places I’ve ever seen.  The campsite was on the river and surrounded by Acacia xanthophloea, known to the locals as “Yellow fever acacia” for its medicinal properties.  It has a yellow-green bark which makes it quite distinctive.  On game drives we saw a lot of scrubby shrub species, none in flower.  It was difficult to identify many of the species in the conservancy but we were told many of them belong to the genus Euclea.  We also got our first glimpse of Solanum incanum but more on that later.

Solanum incanum at the Chimpanzee sanctuary in Ol Pejeta
Solanum incanum at the Chimpanzee sanctuary in Ol Pejeta

Day 4- Nakuru: Compared to Ol Pejeta the flowering flora here was a breeze to identify! Although a lot of it comprised invasive species, such as Lantana and Datura species, and of course the conspicuous Solanum incanum (also known as Sodom’s Apple).  S. incanum gives the management at Nakuru serious trouble, growing uncontrolled in areas that are over grazed or disturbed by humans.  In addition to the invasives we saw a lot of Leonotis mollissima and identified a lovely shrub called Tarchonanthus camphorates from its camphor scented leaves.

Day 5-11-Baringo County: And finally, after quite a lot of driving (during which we saw some impressive Euphorbia candelabra specimen), we arrived in Baringo County.  Our first day here we went for a hike at Lake Bogoria, and spotted two species of interest.  First, the indigenous Adenium obesum, or Desert Rose.  Some of the students carried out their mini-project on the nectar secretion and flower visitation of this species, and found nectar volume varies with time of day.  Second, we saw Salvadora persica, known as the “toothbrush tree.”  Our local guide told us people chew the twigs to promote dental hygiene.  Throughout the county, two new species of Acacia were also evident- Acacia tortilis (The Umbrella Thorn, accurately named after its shape) and Acacia mellifera.  Women in the area highly value A. mellifera because the honeybees they keep apparently favour it for making particularly sweet honey.  And finally, one cannot forget to mention the damaging invasive Prosopis juliflora.  Native to Mexico and Central America, it was introduced to try and control soil erosion and now has spread throughout the county.  It is difficult to remove as it can regenerate from the roots, and is not particularly useful as fuel, food for livestock or fencing.

Adenium obesum, Desert Rose at our campsite in Baringo, Robert’s Camp
Adenium obesum, Desert Rose at our campsite in Baringo, Robert’s Camp

This description is simply the most obvious vegetation we saw on the field course.  The diversity of flora and fauna was overwhelming and I think the students, demonstrators, and staff alike were impressed and awed by the environments we were fortunate enough to experience.  Kenya is truly an amazing place!

Author and Picture Credits;

Erin Jo Tiedeken, tiedekee[at]tcd.ie, @EJTiedeken

I am a nice shark, not a mindless eating machine

Shark!

Jaws has a lot to answer for. While I doubt there was ever a time that sharks weren’t seen as a threat, that threat was only threatening to sailors and those who chose to traverse the oceans. Then Jaws comes along and suddenly sharks become the enemy to anyone foolhardy enough to set foot in briny water.

This isn’t to say that sharks aren’t dangerous. Earlier this year a man was killed by a shark in New Zealand in a vicious attack that left a community stunned. Yet this was a rare event, one of the (on average) 4 fatal attacks that happen each year globally. To put this into context the World Health Organisation estimate that 388 thousand people die from downing each year, yet people fear the sharks much more than they fear the water.

One of the problems is that when people think of sharks they inevitably think of something like this:

White_shark_(Carcharodon_carcharias)_scavenging_on_whale_carcass_-_journal.pone.0060797.g004-A

When really they should be thinking of something more like this:

Catshark_oedv

This is a catshark (also known as dogfish for some reason) and there are over 150 species of which the largest is only about 1.6m and most never reach more than 80cm. They feed on invertebrates and small fish and are completely harmless.

Even the two largest shark species in the world, the whale shark and the basking shark, are harmless. They are planktivores and have teeth that could barely break skin, let along tear anyone apart.

All these sharks, despite their differences, have one thing in common: they are well known to most people. Who hasn’t watched a documentary on ‘killer sharks’ or seen David Attenborough extol the wonders of the whale shark, or simply found a dogfish washed up on the beach?

Yet many of the over 470 shark species are rarely seen by humans. They live in the depths of the ocean and are only occasionally seen as bycatch. Examples include the frilled shark (Chlamydoselachus anguineus), which was caught during the survey of Rockall Bank that I wrote about recently; the cookiecutter shark (Isistius brasiliensis) which feeds by taking bites shaped like a cookie cutter out of prey as they swim past; and my new favourite species, the dwarf lanternshark (Etmopterus perryi) which is thought to be the world’s smallest shark at only 21 cm total length. I think it’s just adorable!

17uCVfi

On the other end of the cuteness scale is the goblin shark (Mitsukurina owstoni) which looks like something out of a very strange nightmare:

11V3gLz

Like so many of these species, little is known about the life-history of the goblin shark. Many deep sea animals live at low abundances, spreading out so as to reduce competition for the scant food that is available at depths. This means our chances of catching specimens are low. Additionally, most are caught by fishermen who generally have little interest in filling their freezers with species that won’t bring in a profit, so it is only when something really strange is caught that animals are brought back for study. Hence the importance of surveys (hey, I’m back to making the point of my last post!) where scientific importance is allowed to trump commerce.

I could continue that theme, but I won’t. Instead I’ll end by asking that you look beyond Hollywood and tacky ‘documentaries’ to see the beauty and variety of sharks. Sharks are incredibly diverse and fascinating creatures yet we know very little about most of them. They can be scary – I certainly would be cautious about going in the water with a great white – but we are much more a threat to them than they are to us. It is estimated that over 100 million sharks are killed each year, a horrifying and unsustainable number. There is the very real threat that many species will go extinct if we continue to exploit them at current levels. Who’s the bigger threat?

Author

Sarah Hearne: hearnes[at]tcd.ie

Photo credit

wikimedia commons

Beasties in the grass

On the 22nd of May, Trinity held its first BioBlitz day where members of the public and all nature enthusiasts alike were invited to see what little beasties they could find around the campus. We decided then to get our own trusty field books and cameras out to see what lurks just outside our department doors!

The most obvious animals to find around the campus are the numerous bird species, including many small passerines that set up territories in the trees outside the department such as this robin and blue tit.

Blue tit
Blue tit
Robin_1
Robin

The birds around campus seem to like to follow the lunchtime behaviour of us humans, such as these blackbirds.

Female Balckbird
Blackbird

However there are lots of tasty invertebrates around the various sports grounds.

Mistle Thrush
Mistle Thrush
Starlings with grubs
Starlings

We confined ourselves to the long grass, however, in our search for inverts finding the usual suspects such as aphids, spiders, Drosophila and ladybirds.

aphids
Aphids
Spirling
Garden Spider
Fly
Drosophila
Ladybird
Two spotted ladybird

We also found nymph froghoppers, a Hemipteran (True Bug) that protects and shields itself by producing a mass of foam.

Cookcoo spit
Froghopper foam

Despite the large amount of non native plants on campus, such as poppies and orchids, pollinators still manage to squeeze out a living on campus as demonstrated by the presence of a seemingly social group of solitary Andrena bees beside the cricket pitch.

Poppy
Poppy
Orchid
Legume
Soliatry Bee sp.
Andrena spp

Finally we searched in what we thought was a lifeless stagnant pond in the back of the department only to find it teeming with daphnia, gammarus and hoglouse.

Pond
Department pond
Daphnia and Hoglouse
Daphnia and Hoglouse

So even in the centre of Dublin a closer look at biodiversity can often surprise you!

Author

Kevin Healy: healyke[at]tcd.ie

Photo credit

The Zoology Department BioBlitz Team

The VIP Tweetment

As part of an ongoing census of the birds of Trinity College, we surveyed their diversity just outside our door.

Great Tit
Great Tit
Weight watchers
Weight watchers
Scales
Scales
Tags
Tags
Blue Tit
Blue Tit
Notes and nails
Notes and nails
A resting robin just before take off

Authors

Trinity College Zoology Students

Photo Credit

Trinity College Zoology Students

 

 

Biodiversity loss and ecosystem stability

crab-3

 

 

 

 

 

 

Understanding how species extinctions affect the stability of ecosystems is fundamental to the prediction of future biodiversity loss and to ensuring the reliable provision of ecosystem services. In a paper published recently in Ecology Letters*, we (researchers from the School of Natural Sciences in Trinity College Dublin and the Trinity Centre for Biodiversity Research, together with collaborators from Northern Ireland, Spain and Switzerland) show that the destabilising effect of biodiversity loss is likely to be considerably greater than thought previously.

Ecosystem stability has been the subject of hundreds, if not thousands, of papers. It occupies a prominent place in both fundamental and applied ecological research. However, ecological stability is regularly touted as a multifaceted and complex concept. This is because there are many different ways in which we can measure the stability of ecosystems. These include, for example, the variability of systems over time or their ability to resist or recover from disturbances. However, in spite of its multifaceted nature, almost all studies focus only on a single measure to characterise ecosystem stability. Further, the few studies that measured more than one component of stability considered them as independent and therefore analysed them separately, in spite of the fact that they are likely to be related to one another.

Using an experimental study done on a marine rocky shore, we examined the effects of the loss of different consumer species, including both predators and their prey, on multiple distinct components of ecological stability simultaneously. We show for the first time that, even though stability is a relatively simple property of ecological communities, different species contribute in different ways to the maintenance of stability. Moreover, our study also demonstrates that the loss of species from ecosystems can modify and even decouple relationships among components of stability. Ignoring the multifaceted nature of stability therefore risks underestimating significantly the potential of perturbations to destabilize ecosystems. In conclusion, our study indicates that we currently underestimate significantly the overall destabilizing effect of biodiversity loss and thus the true scale of the global extinction crisis that we face.

Author

Ian Donohue: ian.donohue@tcd.ie

Photo credit

http://www.howdoeslooklike.com/what-does-crabs-look-like/

School of Natural Sciences Postgraduate Symposium: Part 1/4

Postgraduate students from Trinity College Dublin's School of Natural Sciences
Postgraduate students from Trinity College Dublin’s School of Natural Sciences

On the 15th and 16th April we had one of my favourite events at Trinity College Dublin: the annual School of Natural Sciences Postgraduate Symposium. Over the course of two days many of our PhD students presented their work to the School. We also had two amazing plenary talks from Dr Nick Isaac (CEH) and Professor Jennifer McElwain (UCD). For those of you who are interested in exactly what we work on here at EcoEvo@TCD, here are the abstracts from the PhD student presentations. Check out the TCD website for more details! Continue reading “School of Natural Sciences Postgraduate Symposium: Part 1/4”

Bees and biofuels….what’s the buzz?

800px-Bumblebee_05

As oil prices sore and the future of world energy is uncertain, there is rising demand for alternatives to fossil fuels. From solar energy to wind to algae fuel and biodigestion, the alternatives are numerous. One alternative that has received substantial media attention is the use of bioenergy which involves the production of energy from crops including maize, sugarcane, elephant grass and oilseed rape which are grown specifically for energy purposes.

However, the debate over bioenergy crops is often heated. Do they compete with food crops and therefore increase prices in an already stretched market? Do bioenergy crops result in the destruction of tropical rainforest to clear new areas for farmland? And are bioenergy crops even carbon neutral to begin with?

One debate that has been investigated by researchers in Trinity as part of the Simbiosys project is whether bioenergy crops can have impacts on biodiversity – the animals and plants that live on and in farmland. Not only are these animals and plants an important part of our heritage, but they are the pollinators of our food crops, the insects that control agricultural pests and the organisms that help provide us with clean water and air. With two-thirds of Irelands land area used for farming, any changes in farming practice are likely to have knock-on impacts on biodiversity.

A study recently published in the Journal of Applied Ecology investigated how growing bioenergy crops impacts the bees and other pollinating insects that pollinate wild flowers, apples, berries, oilseed rape, clover and many other crops here in Ireland (in fact pollinators are required for approximately 1/3 of all the food we eat). It was found that although different types of insect responded differently, there were no decreases of pollinators in bioenergy crop fields in comparison to their conventional farming alternative. And for some pollinator groups such as the small solitary bees, the introduction of small amounts of different crops into agricultural areas may actually be beneficial.

However, bioenergy crops did not provide the stable nesting conditions needed for pollinators; almost all bumblebees chose to nest in the field margins and hedgerows surrounding the fields. Field margins and hedgerows also provided habitat for large numbers of other insects. The study concluded that small amounts of bioenergy production on existing farmland may provide a diversity of habitats for pollinating insects, but that changes in levels of production in the future may have different effects. Hedgerows and field margins should also be maintained during bioenergy production as they are important nesting and forage sites for pollinating insects.

Although bioenergy crops in their current form seem like good news for bees, the future may be less certain. Growing these crops over larger areas rather than in individual fields, or the replacement of forests or meadows rather than existing arable (tilled) land, may have very different effects. With EU targets of 20% energy from renewable sources by 2020, and bioenergy incentives for farmers, we can expect further changes in this developing sector over the next few years.

Author

stanleyd[at]@tcd.ie

Photo credit

Dara Stanley

The Flora of the Future

Flora of  the future

It’s the year 2050. Several billion more humans occupy the world, and species translocations are by now the norm to mitigate against increased urban sprawl, climatic instability and a sea level now a third of a metre higher. In spite of unprecedented demands on the natural environment, governments have slowly developed capacity for conservation of wilderness and semi-natural habitat. Beyond this even, with the vast majority of the human race by now living in cities and the continued trend of rural land abandonment; restoration ecology has come to the fore at entire landscape and regional scales. The concept of ‘rewilding’ is debated openly amongst politicians and the public – no longer the mere theoretical exercise of academics. The monetary value of ecosystem services is also by now a very real and tangible concept within economic circles, embedded within highly developed metrics such as green-GDP.  Despite such positive developments, however, problematic legacies of the past remain. Intensification of agriculture has been unrelenting globally, notwithstanding inroads into adoption of agroecosystem approaches. A transition to truly renewable energy sources is still incomplete and of utmost urgency. One of the most critical questions of all most likely still looms – have we yet done enough to put a cap in the peak of this, the sixth great mass-extinction of life on the planet?

And so, it is within this future and none-the-less challenging world we find the modern ecologist and biodiversity practitioner at work.

What kind of new and useful technologies may exist to help tackle such problems and challenges of the not so distant future? It is interesting to deliberate on one low-tech tool in particular (the so-called bread and butter of biodiversity), which has been with us already for centuries – and that is the humble species checklist. Specifically we take a look at the Flora – and although coverage here is rather phyto-centric, it should be easy to draw equivalents to all forms of taxa, without (too) much stretch of the imagination.

So what is a Flora in the traditional sense, why is this changing, and how will the Flora of the Future look and function? To briefly tackle these first two questions, a Flora is primarily a list of plant biodiversity (either with or without diagnostic characters and keys) within a specified geographic range, be it local, national or at larger scales. Outside of this basic function there are the ‘added-extras’, which may include notes on distribution, ecology, synonymy, conservation status and even ethnobotanical use. Often the assemblage of national-level Floras has proven quite a mammoth task; logistically challenging, fraught with funding difficulties, and above all time-consuming – with efforts spanning over several decades for particularly biodiverse countries. This is all very well, and such traditional Floras have and will continue to serve as invaluable tools. In this modern age, however, change is called for to tackle some common short-comings of the Flora.  A considerable amount of valuable information collected by taxonomists and other experts in the production process is typically lost, never making its way into the public realm – and when such publications can easily run to over 20 volumes, it is clear to see the major constraints involved. Another key drawback is the sheer speed at which redundancy can occur. Even before the final volume of a Flora is published, taxa (species/genera/families) covered within the first volumes may have long been ripe for new taxonomic treatment.

The revolution in how biological information is collected, stored and disseminated is already greatly influencing the Flora. One of the most recently initiated national-level projects is the Flora of Nepal project, for which advances in biodiversity informatics have permeated the entire process from preparation to publication. Although the Flora of Nepal will still be published in printed format, a (if not the) main focus will be an E-Flora freely accessible online, which will also greatly expand the availability of information assembled by experts. A simple yet very significant feature will be the ease of portability of numerous volumes to the field in digital format.  Though perhaps most critically, the Flora of Nepal will be maintained and updated to reflect new findings – creating for the first time, in essence, an evolving Flora.

Before we really begin to speculate on the form and function of our Flora of the Future, we must first take a look to the current cutting edge of biodiversity informatics. In what must be one of the most significant advances in decades, the cooperative development of the Global Biodiversity Information Facility (GBIF) by many governments and organisations has promoted and facilitated the “mobilization, access, discovery and use of information about the occurrence of organisms”. This centralized repository of earth’s biodiversity is fast set to reach one billion indexed records within a few years from now, fed from diverse sources ranging from individuals to national biodiversity data centres. It is difficult to envisage how the Flora of the Future could in any plausible way side-step such a global network. Whereas floras have traditionally featured a top-down, expert driven synthesis – the Flora of the Future will also no doubt integrate the emergent trend of bottom-up assembly of knowledge – a good example of which is currently purveyed by the Encyclopaedia of Life.

Let’s get back now to our future ecologists and biodiversity practitioners, and take a little look in as they go about conducting their fieldwork. No matter what habitat or location they study in worldwide, they will each possess a small handheld device connected to the Flora of the Future. Automation of species identification by means of this device will have removed a large bottleneck in their work – leaving ecologists to focus on actual ecology. No longer will they be bound to a particular geographic territory due to limited floristic familiarity –  we will witness a complete opening of boundaries, and greater migration of ‘western’ ecologists to the frontline of areas of global biodiversity importance.

But just how exactly could such a device work? A potential basis could feature a combination of machine-learning morphometrics and DNA barcoding  – two presently very promising tools. For the former, development of algorithms for auto-identification of plant species is already well underway (see for example the Leafsnap mobile app). These function much like facial recognition technology, and through input of a digital scan/photo can pinpoint unique morphological characteristics required for successful classification. A key aspect of machine learning is removal of subjectivity by conversion of shapes into numerical descriptions – no need for argument any longer on just how ‘subglobose’ a feature is; the ball is already in motion towards a predictive and integrative taxonomy. Upon scanning a specimen in the field, an image will be broken down into key morphometric characteristics, and referenced against a large central database within the Flora of the Future. The Flora will prioritize this procedure by first referencing against species known to occur within a certain radius from where the user currently stands (a useful feature in itself!). The ecologist, on the spot, may learn that the specimen has a confirmed match, and proceed to download key local statistics of importance. On the other hand, this specimen may in fact represent an extension of the species known distributional range. The finding, however, of no known match in the database could spell discovery of a new species, whereas a positive match with notably low morphometric agreement may indicate new subspecific taxa or otherwise interesting findings (for which DNA barcoding could be employed for further verification in both cases).

Regardless of outcome, the above three scenarios will have allowed for a real-time and in situ solution to identification of species. The exact significance of this process will not only lie in the freeing up of both ecologists’ and taxonomists’ resources, but in the real-time flagging of new discoveries. As it stands, it is expected that discovery of remaining undescribed plant species will be an incredibly inefficient process (given that 50% of the world’s plant species have been discovered by only 2% of plant collectors), despite the vast number of these thought to exist. A recent study examining the exact inefficiency of the production chain from collection to publication uncovered that “on average, more than two decades pass between the first collection of samples of a new species and the publication of the species’ description in scientific literature”. In other words, a specimen of a new species has physically passed through the hands of many people before the simple ‘discovery’ (perhaps after many, many years in a herbarium) that it is something new to science. In this sense, an important function of the Flora of the Future will be instant recognition (perhaps even while standing in the field!) of a new discovery as just that – which can drastically reduce this presently overblown timeframe and waste of resources.

Getting back to the future for now, we see our biodiversity practitioners and ecologists as key players in the advancement of ecological as well as taxonomic discovery, with a highly efficient yet passive ability for discovery embedded within the commonplace tools they use, as they go about their work.  With an entirely streamlined approach to field research, and identification no longer a daunting prospect in the study and documentation of biodiversity, we will eventually see the peak of mass extinction pass, looking back behind us. The challenges of tomorrow are no doubt great, and a renewed vigour for the taxonomic process will be critical for progress on these fronts. The Flora of the Future will for the first time sew a seamless line between ecologists and taxonomy; the essential currency of biodiversity.

Author

Paul Egan: eganp5[at]tcd.ie

Photo Credit

Paul Egan

City slickers

Urban_wildlife_-_squirrel

Typically, when humans and wildlife meet it’s curtains for the latter. Think of all the megafaunal extinctions in the past and the mounting evidence that we’re responsible for an ongoing sixth mass extinction event. Aside from directed extermination we can change the environment over a very short time-scale to suit our needs and other lifeforms are often left playing catchup. This is especially true for plants and animals (microorganisms have such short turnovers that we don’t really impact them in this way); the plight of the blue swallow isn’t top of an industrialist’s list of priorities.

Despite these radical changes, some species have adapted to living in our towns and cities. This has piqued the interest of scientists and we’re now seeing the burgeoning field of urban ecology populated by urban ecologists. The amount of urban biodiversity is quite surprising and the adaptations of the flora and fauna comprising it equally so. Look at the previous post talking about birds lining their nests with material from discarded cigarette butts.

As civilization has developed we’ve become more aware of the value of nature, be it an intrinsic worth or a more practical value. So we can actively change our urban centres to accommodate more species if and when we choose. Sushinsky and colleagues asked how we should grow our cities in order to minimise their biodiversity impacts. Their conclusion was a more concentrated city plan would be better suited to avian diversity than a sprawling one. Certainly, it seems better for our cities to grow vertically rather than horizontally if we are to minimise humanity’s footprint. So, more New Yorks and fewer Los Angeles.

We can even provide supplementary food to animals. Fuller et al. showed that bird feeders can increase the abundance of birds and pointed out that up to a third of households in Australia, Europe and North America supply food for birds.

Then there are species that can prosper on our discards when it hasn’t been our intention to feed them in the first place. Badgers, foxes, raccoons, bears, the list goes on. All of them can make a living in an urban setting.

With more and more of us cramming ourselves into cities we should be aware that there are real benefits to interacting with nature. We feel psychologically better when there is more of the natural world around us.

To butcher Gordon Gecko, green is good.

Author

Adam Kane: kanead[at]tcd.ie

Photo credit

wikimedia commons